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FOREWORD

The final technical report and this Supplement were
prepared by F.M. White, R.C. Lessmann, and G.H. Christoph
of the Department of Mechanical Engineering and Applied
Mechanics of the University of Rhode Island under Contract
F33615-71-C-158%, "Analysis of the Turbulent Bcundary Layer
in Axisymnetric and 1nree-Dimensional Flows."

The contract was initiated under Project No. 1426, "Ex-
perimental Simulation of Flight Mechanics,' Task No. 1426(4,
"Theory of Dynamic Simulation of Flight Environment.” The
work was administered by the Air Force Flight Dynarics Labour-
atory. Wright-Patterson Air Force Base, Ohio, Dr. James T.
Van Kiren [FX), Prcoject Eagineer.

The work was accomplished during the period 1 June 1971
through 30 June 1972. )

The report was submitted by the authers in July 1972.

This Supplemenrt contains an outline of the theoretical
method for engineering use.

This Supplement has been reviewed and is approved.
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Widop ¥ (eoeals
PHILIR P. ANTON.ATOS
Chief, Flight Mechanics Divisicn
Air Force Flight Dynamics
Lahoratory
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I INTRODUCTION

The authors have been engaged for several vears in the develorment
of a nevw method of analysis of turbulent skin friction under fairlwv
arbitrary -onditions of freestream and wall parameters. Early
efforts [1,2,3] were devoted to two-dimensional skin friction
calculations.while later pavers consider axisvrmretric skin friction
[L,5], three-dimensional skin f-iction [5], wall heat transfer [5],
and wall roughness and transpiration conditions [6]. I+ is the
purpcse of this report to outline the cormlete details for engineering
use of our two-dimensional theory [3] of turtulent skin friction
under :rbitrary compressible flow conditions. It appears to the
authors that this new method is not only the simplest hut also the
most accurate computaticnal scheme in the literature. Therefore we
feel justified in recommending this procedure for- peneral use bv
engineering designers.

This methoc concerns skin friction onlv. No attemnt is made to
estimate the value of anv ""traditional"” integral narameter such as
a shape factor or a romerntum thickness. Such paramecers cculd easilv
te added to the present analvsis, but we adamantly disccurage their
use. In our opinion, shape factors and integral thicknesses are

of little significance and serve mainly to divert the attention of
the engineer from his basic problem, the turbulent skin friction.

This theme, admittedlv biased, dominates all our work [1-6].
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PUTLUINE OF THE BASIC THECRY

Ir. reference [3], the use of a compressible law-of-the-wall
cad a é;occo temperature approxiration are shown to lead to closure
of the boundary layer continuitv and momentum equations for two-
dirensional compressible turbulent flow. The variables which arise
guite naturally froum this analvsis are the skin friction variable:

/2

- oyt = o2
A = (2/\.f) » Cf = hW/DeJe

’ (1)

which varies with the dimensionless coordinate in the freestream
direction:

xk = x/L (2)

A basic parameter in the theory is the dimensionless freestreanm

velocity distribution:
v = U(x)/u = V(x*) (3)
e o

The quantities L and Uo are reference constants; they mav be taken
e2qual to unity if one is prepared to hanéle the ¢ "ulting "vnit Reynoids
numbers” and "vnit lengths” in the basic equaticzi. Ir oar rm vk,

w2 commonly take L equal to the body length (5 thet x* va-ies from
zero to unity) and take U, equal to the initiazl wvelocitv Ue(x=0).

We will illustrate both these approaches in what follows, sinc. it

"

is our experience that improper use of "x*" and "7 in ths theorv
is the main cause of erroneous results when the theory is used.
2




The analysis not only requires accurate knowledge of V(x*) but
also its first and second derivatives, V' and V''. Therefore it is
essential that an accurate zurve-fit or other smooth formula be
provided for the distribution V(x*). Failure to provide a smooth
curve-fit is the second most common source of error in the theorv.
de shall also illustrate this problem with examples., Note that there
are no limitations upon Ue(x), which mav be subsonic, transonic,
supersonic, or hypersonic. he theory is valid for all.

The second important runnirg parameter in the theory is a sort

of "stretched” Reynoids number, i*:

R = RL/(l/V)' . (u)

where R = (UL )z )2

The prime Indicates differentiation with resvect to x*. The Revnolds
numper R is a constant for low speed adiabatic flow [ref. 1] hut

may vary with x#* at high speeds due to wall and freestream temperature
variations. Finally, the freestream Mach number variaticn !e(x*) and
the wall temperature ratio Tw(X)/Te(X) are combdined into a singl

parameter A(x®), first used by van Driest [7] _n a flat plate analysis:

A= AT, - 1)/[sin Y(a/c) + sin " (b/0)] (5)

(2
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where Taw is the adiabatic wall temperature and a/c, b/c vary or.y

with Bach number and temperature ratio:

a = 7T_4+T -2T ; =T _-T 2 2
aw W e aw

Numerical values of this parameter A are shown in Figure 1. This

figure may be used to pick off values of A when making a hand computation

with the theory. Otherwise, when usinp the computer program in this

report, computation of A from ‘5) and (6) is already programmed.
Note that A varies only slowly with Mach number and temperature
ratio. Therefore, an accurate curve-fit expression for He(x*) and
(T"/Te) is not needed; any reasonable approximation will do.

All of these parame*ers arise in the basic differential equation
for computing A(x*) from an arbitrarv (¥nown) distribution of Vv, M ,

and Tw/Te' The equation is:

-
-

-2 0.07 (r/v)"
+ 9 A gt RE ]+ G

A
~
post

N 7
(3 A? o R*V.O j

QC
32

ar =
dx®*

0.186 £* A3

(7

For low speed flow, A = 1.0 and Eqg.(7) reduces tc the incormressible

anelysis of reference [1). The functions #* and p* arise from
the integral coefficients of [1,3] and varv only with the quantity

(X/lnax}' They are plotted in Figure 2, which is the second figure

required for making a hand cornutation from the theorv. Finallv, the

guantitv "Amax" is the value of A at whrich boundarv laver sevaration

4
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occurs. This is correlated in (1,3] with R® and A , as follows:

%max 2  8,7A 1oglo(R*) . (8)
As this point,f* approaches zero (Figure 2) and thus the derivative
(d\/dx*) becomes infinite and Ce = ./k2 approaches zero. This of
course is the definition of the separation point. The theory at
present gannot be used beyond the separation point.

Numerical values of f* and g®, taken from [1], are given in
Table 1. In the computer program which follows, thcse values are
curve-fit with the following expressions which give excellent accuracy

in the range 0.36 < A/xma < 1.0:

x

(2.434 2 + 1.443 22) expl- u4,0 26] 3

£%
(9)

gt 2 1 - 2.32Z + 1762

where 2 = 1 - (X/Xmax).

If (k/kmax) is less than 0.36, then f* 2 g* 2 0, and Eq.(7) is not
necessary. The same is true if R* is negative, which corresponds to

a favorablélpréSsure gradient. In these cases, the following simplified
differential equation is used:

{ )X <0.36 lmax or R <0):

d\ 1
Tt ¥ F R, Vexn(-0.48 A/A) - 5.5 V')V, (10)



M

< 0.36:

0.36
o. 38

0.40
0.u42
0.y
0.u6
0.u8

0.80
0.82
0.84
0.86
0.88

1.00

TABLE 1

THE FUNCTIONS f£* AND gt
FOP. UUSE WITH EQUATION (7)

8*

]

Use Equation (10) instead.........

0.00237
C.00u36

0.00774
0.01310
0.02098
0.03176
0.0u4562

0.06255
0.082u42
-0.10503
0.13018
0.15763

0.18715
0.21853
0.25159
0.28615
0.32204

0.35914
0.39732
0.436u46
0.u47646
0.51725

0.55873
0.60085
0.6u4353
0.68673
0.73040

0.77uu9
0.81895
0.86377
0.90890
0.95431

1.00000

0.07575
0.13522

0.22410
0.34015
0.47212
0.60479
0.72521

0.825u6
0.90229
0.95566
0.98735
0.99997

0.99642
0.97944
0.95155
0.91498
0.87164

0.82313
0.77079
0.71574%
0.65887
0.60092

0.5u4250
0.48407
0.42601
0.36864
0.31219

0.25682
0.20268
0.14986
0.09844
0.0u8u6

0.00000



ITT  HAND (ALCULATION

The basic relation, Eq.{7), is quite suitable fer hand calculation
and its integration may be accomplished either numericallv or
graphically. The following stevs outline a tyscical oortion of
the calculation:

1) given tne value of ) at some intermediate position x%.

2) Establish numerical values, from given input information,
for V, (1/V):, (1/v)'', He and (Tw/Te) at that x*,

3) Compute R from Eq.’u) and chen compute R* from (&) alsc.

4) For the given He and (?w/Te}’ ~ead A from Figure 1.

S) Compute xva< from Eq.(8) and hence compute X/Xmax’

6) E-ter Fipure 2 or Table 1 at (X/X‘ax) and read £% gnd p%.

7) Using A, £%, g®* and R* from above, compute the local rate
of change (d\/dx*) from the basic relation, Eq.(7). You are now
readv to "integrate ' forward to the next position (x* + Ax*) using
a nurerical formula such as  A(x®+Ax®) = A(x%) &+ Axk 2'(x®+Ax*).
Alternately, the graphical "method of iscclines" is verv convenient,

since we are dealing only with a first order differential eaquation.

Numerical Exarmple:

At the initial position of the supersonic relaxing €low
experiment of F. W. Zwarts (Case 1 in what foilows), we are given

the following information:

o




Cf = 0.000894

X = 0.75 inches

U =U = 2205 ft/sec
e o 2

v, = 0.00127 ft"/sec

v = 1.0

(1/v)' = 0.008
(/v)*'' 2 0,003
M = 4,02

e

Adiabatic Wall

} per inch (L =1")

This is sufficient input to proceed forward with Eq.(7), as follows:
Step 1. Establish (Tw/Te) from an adiabatic wall formula with, say,
a recovery factor of 0.89 for turbulent flow:

T/T & 1+ 0.80(0.2) M = 3.88
w e (2]

Also estimate the viscosity ratio from a power-law formula for air:

0.67
E3 M -
l;/‘g 2 (Tw/Te) = 2,47
Step 2. Compute the initial value of X from the skin friction:
A = (2/cf)l/2 2 47.3

Step 3. Compute R, and R* from Eq.(4): use L = 1 iach for converience.

R, = [2205(1/12)/0.0001271/(3.88)Y/2/(2.47) = 3.56 x 10°.

L

R = R/(1/V)' = 1.25 108

3.88 (adiabatic), read A £ 1.63

! H
Step 4. For M_ = 4,02 and (Tw/Te)

from Figure 1.

Step 5. From Eq.(8), compute Ama 8.7(1.53) 1oglo(l.25x108) z 115,

X
Hence A/Xhax = (47,3)/115, 2 0.u4l2,

Step 6. From Figure 2 or Table 1, at 0.412, read f* = 0.294 and

0.07

g¥ £ 0.011. For convenience, compute [3gh R¥ ] £ 0.131.

Step 7. Evaluate the derivative from Eq.(7):

10



0.008 0.003..

2
dx* ) —ioy Ll * 3(0.131)/1.63 2y 4 mo .131(1.63)°)
dx

0.16 \0.294)‘(1.63)

0.0091 + 0.121
0.20u4

= 0.64

This is a rather small rate of change, corresponding to a modest
adverse pressure gradient. We may integrate forward about three
inches, which gives about a 4% change in A. In no case should we
try to extrapolate forward more than about a 3%-5% change in A , and

in this way we will avoid serious numerical error. Here we estimate:

A(3.75") = X(0.75") + (3. 0") (0 75")

47.3 + (3.0)(0.8“) = 49,22

Cf(3.75") = 2/(49.22)2 = 0,0008256
If Me, V, etc. are known at 3.75", we are now in a position to
evaluate (d\/dx%) at this new station and proceed forward again.
If this defivative is markedly different from the previous one of
0.64, we should backtrack and take an "average" slope over the
previous three inches to estimate a more accurate A(3.75"). Note
that we are using Ax* in inches here, since we chose L = one inch.
If we had chosen L = 18" (the total length of Zwarts' model), then
both RL and (1/V)' would be eighteen times larger and hence R* would
still be exactly the same (1.25x108), leading to the same values of
f* and g*. However, (1/V)'' would be (18)2 larger and the result
would be that (d\/dx*) is eighteen times larger. Meanwhile, Ax* is
eighteen times smaller, so that the value of A at 3.75"would be

still the same (49.22). Thus the choice of L does not affect the result.

11
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[V DIGITAL COMPUTER CALCULATION

The basic theory, Equation (7), has also been programmed for use
on a digital computer. The sugpested FORTRAN program is on the next
page, followed by a subroutine (RUNGE) which implements the required
numerical integration by a Runge-Kutta procedure.

The user must provide a smooth curve-fit to the dimensionless
freestream velocity distribution V(x*). The supgestion here is for

a fourth order polynomial:

The first READ statement calls for the userjs coefficients (ao,al,a2,
a3,au). If some other expression is used (exponential, sine wave, etc),
the user must himself modify the three statements following statement
ten, which compute V, VP, and VPP, Immediately following these three
are three more statements which invert and compute (1/V)'', (1/V)',

and (1/V). These should not be changed.

The second READ statement calls for initial data appropriate to

the particular run:

* * *
UOL/\)e s Ce s AX*®, XT s xmax

The program will increment itself in steps of AX® (which is called H
in the program) and will stop when XMAX Is reached.
At statement 21, the user must provide an analytical estimate of

the freestream Mach number distribution Me(x*). These need not be a

12
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FORTRAN Program for Solving Equation (7)

PTUTHSION Y(10), F(10)
REAT IN POLYNCMIAL COEFFICIENTS FOR V(Y#) AND ALSO INITIAL DATA.
7 PEAD(5,%)AZ AL A2,A3,Ak

FEAD(5 ,*)ROLPO,CFZERC H, X, XMAX
Y(1) = SOFT(2./CTZERD)

=0
8 TF(X-4™AX) € 6.7
6 CALL RNTE(1,¥.F,¥ K M K)
70 (1¢,29), X
NOw COMPUTE LOCAL ¥, V', V™. PROZRAM COWEUTES 1/V,(1/V)',(1/V)
C BE CAREFUL, TFOUG~ NOTICE POR ZWARTS DATA WE USE (X-0.75), NOT X.

102=%-0.7
AZ + Alt s A2AZRRD 4 AIRZERZ 4 AuRTARL
VP = Al + 2.%A2%Z 4 3 RAZRZRRD 4 4 EANATEE]
VEP = 2.%A2 + 6.%AIXZ + 12, #ALKZERD

(o]

=

8

<
H

VPP = {2.%VPEVP/V - VPP)/V/V
VP = -VP/V/V
V= 1l./v

C HOW COMPUTE THE LOCAL MACH NUMBER. AY APPROXIMATION IS 0.K.
IF(X-6.75)21,22,22
21 CM = 4,125 - X/€.
G TO 23
22 C¥ = 3.9
C NOW COVPUTE ADIAMATIC WALL AND LOCAL WALL TEMPEKATURE, THEN "A™.
23 TAW = 1. ¢ O.89%0, 2%kCMA#?2

Ta = TAW
A= TW + TAW - 2.
B = TAW - TW
! £ = SQRT((TAW + TW)*%2 - u #*TW)

»

SQRT(TAW-1.)/(ASIN(A/C) + ASIN(B/C))

TES; TO SET IF EQ.(10)SHOULD BE USED, OTHERWIST UST T0.(7).
IF(VPYul, 41,42

) F(1) = BL/V/CXP(.u8%Y{1)/A)/8. + 5.3%VP/V
GO TC ©

U2 RSTAR = RZERC/SQRT(Tw)/TWk#) _£7/VP
0 = Y(1)/R.7/A/ALOG1OIRSTAR)
IF{g-0.4)41,41,50

50 Ir(Q-1.)51,52,%2

52 WRITE(6,606)X

6506 FORMAT(' SEPARATION HAS OCCURRED 4T ¥ = ',712.4)
GO T 7

= 1. -Q

= 1. - 2.3%2 ¢+ 1.76%7%R3

= (2.U42u%% + 3 UNFRZRADJRTYP(~uu E74RG)

= 3.%GSARSTAR®20, 07

VP*(l 4+ I.RGR/AJAY/V 4 VPPRAGRAAL /YD

= Q/.16/TS/ARRY

(]

i
Pt

HR *‘(e 707) x Y(1), CF, Vv, C¥
707 mm’r(zr‘lo 4,2Fi4.8,F10.4)

30 TC 8

END




. SUBROUTINE RUNGE(N. Y, R.X, H,".+)
, “HIS ROUTINE ERFORMS RUNGZ-KU™TA CALCULATION BY GILLS METHOL
% “Iy“hsion ¥(i0), 7(10). @(10)
M=M+1
50 T0 (1.4.5,3.7° , M
1100 ¢ 1. N
)

1}

0

A V]
8 IC W -8
——
o=

\ﬂ o~

¢
ha gl SN Y
!

(]

U ’fEm MG&, ACCURACY. USE A = 1.7G7106781185 T5ell

i
'
|
)
)

3 D et

'N

) L A*(R(I)*H - (I
*A*H*“(I) + (1. - 3.
932
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B
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[«Ra0 T | B T )

DD
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)
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smooth curve-fit, siice the expression will not he differentiated and
is used on.v to compute van Driest's paramezer A from Equation (5).
Firally, iust below statement number 23, the local wall temperature
must le estimated. In the example shown, it is simply set equal to
the local adiabatic wall temperature (the conditions of Zwarts' data).
Again, any reasonable estimate will do, because ?w is used onlv to
compute van Driest's parameter A, which Figure 1 shows is onlv slowlv
varying with both T“ and He.
All cther procedures in the theory arz carried out by the computer
program, including testing for boundary laver separation and printing

out the separation point if A exceeds Xmax’

Exampie 1. THE SUPCRSONIC RELAXING FLOw OF ZWpITS (UNPUBLISEED)

In unpublished wcrk, Dr. F. W. Zwarts of McGill University
measured a two-dimensional supersonic flow which decelerated zharply
from Mach-4 to Mach-3 in about eipght inches and thereafter remained
nearly constant at Mach-3. This flow was used as an example to test
the finite difference caiculations of Bradshaw (B). It is a difficult
test for any method. The freestream velocity V(x) and Mach nmimber
Me(x) ar: shown in Figure 3. The velocity is fit bv the solid line to

a least-squares fourth order polynoriial: (Uo = 2204, ft/sec)

4
V = 1.0013 - 0.00051 x -~ 0.00388% x2 + C.000uLubE x3 - 0.070013" x

The smoothness of the fit is seen to be guite adequate, and one can take

confidence in a reasonably smooth first and second derivative. The Mach

15
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2300 —
CURVE FITS:
2200 4000% LEAST SQUARES, EQ .(11)
U, (Ft/sec) o S EXPONENTIAL, EQ.(13)
2100 }—
2000 —
1900 | ] B 1 ]
0 4 8 12 16 20
X ~ inches
5.9 —
PIECEWISE LINEAR FIT
UITE ADEQUATE
4.0 %b- Q ¢
M
e
3.0 — 5
2.0 | [ I I |
) 4 8 12 1€ 2n
¥ - inches
0.0014 _
THEORY, EQUATION (7): o
LEAST SQUARES o
0.0012[ —-m—- EXPONENTIAL © o ° o
Ce
0.0010[
R 4
c.0008/~  ov2aQeSo%o
\. !
0.0006 p— AN / FINITE DIFFERENCE N\
‘\ - METHOD OF BRADSHAW (8)
- ]
0.0C04 l ' L l !
0 4 8 12 16 20
X - inches
Figure 3. COMPARISON OF THEORY WITH THE SUPERSONIC RELAXING

FLOW EXPERIMENT OF ZWARTS (UNPUBLISHED).
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nurlter 1s fit adequatelv by two linear rieces:

x < 6.75": 4 4.125 - x/6
= e

(12)

X > 6.75": u 3.0
e

Note that x is in inches in both Eqgs.{(11) and (12), rhat is, L = one inch.

Also shown on Figsure 3 Is an exnonential approximation to "e(x):

V :  0.9165 + 0.0835 exn[~0.02 x - 0.05 x21 (13)

This is plotted as a dotted line. The fit is excellert up to x = 12
inches, after which the curvature in the data - which mav he an artifact -
is not fit by the expomential curve.

The initial data to he read intc the prosran are as follows:

[

Rc = L'OL/\)e = (2204)(1/12}/(n.0DG106) = 1.73 »x 10 .
Ce = 0.00C8¢s¢ (From Zwarts' data).

‘o
x = 0.75 inches.

o

h = Ax = 0.5 inches.
x = 18 irches.

max

The choice Ax = 0.5" is an engineeriny judement cesirned to hreav the
interval 0 to L down into about forty steps. Doubline this, to Ax = 17,
will cause a numerical error of ahout one per cent in the computed skin
friction. The comouted results fron the nrogram arc also shown in Fieure
3. Both the polynomial and exnronential fits give theovetical CF in
reasonable agreement with the Preston tube data. Both are far more accurate
than the finite-difference calculaticns of Bradshaw and Ferriss (8), also
shown, which fall thirty to forty per cent low.

17




Exampie 2. THE UPPER SURFACE OF AN NACA €4A210 AIRFOIL

Maan and Whitten {9) measured skin friction with a Stanton tube and
a Preston tube on the upper surface of an NACA 64A210 airfoil in bigh
subsonic flow, M_= 0.7. The measured velocity distribution for zero

angle of attack is shown in Figure 4. An excellent fit iz orovided Lv the

solid line, a fourth orde. least squares polynomial:

V = C.8664 + 2.64%ux* - 5.6028x*2 + Q.1633x*3 - l.?O?gx*u (14)

Since the flow was subsonic, the static temperature was nearly constant

anc thus the freestream Mach number was nearly oroporticmal to V:

M = 0.7V (15)
For initial data, Mann and Whitten suggest that transition to turbulence
occurred at about x* = 0.1, with Cf somevwhere between 0.003 and 0.004;

6

R = ©.55x10 3 xt = 0.1

o) o)

h = Ax* = 0.05 (16)

Cg = 0.003 or 0.004 ;

o) x* = 1.0

mAY

T 2 T

w aw

These values were run with the computer program of rhis report. The

results are shown in Figure 4. Both runs are in reasonable agrement with
the data. The dotted curve (Cf° = 0.003) showws separation at the trailing
edge, which was probably the case. Mann and Whitten themselves demonstrated
good agreement with the Karman integral theory of Sasman and Cresci (10),

and also with a finite-difference procedure by Cebeci et al (11).
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Aanad

1.4

-—

LEAST SQUARES
POLYNOMIAL,
EQUATION (1u)

0.8

0.004

0.2 3.4 0.6 0.8 1.7

0.002

0.00) p—

l I

THEORY, EQUATION (7):

Ce = 0C.004

DATA, MANN & WAITTEN (3):
® = STANTON TUBE
PPESTON TUBE

>

Figure &,

COMPARISON OF THEORY WITH DATA OX THE UPPER SURFACE OF
A5 NACA GUYA210 AIRFOIL AT M = 0.7 (REF. 9).
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Example 3. SUPERSONIC FLOW PAST A CURVED COMPRESSION RA¥P

Sturek and Danberg (12) placed a faired curved ramp on the floor
of a supersonic wind tunnel and generated a smooth decrease in freestrean
Mach number from 3.5 to 2.9 in a distance of ten inches. The freestream
velocity data are shown in Figure 5. They are fit quite well by the

solid curve, wiich is a least sguares polynomial:

u
V = 1.1122 - 0.04396 x + 0.005943 x2 - 0.0003263 x3 + 0.000005%2 x s

(17)

where x is irn inches. The derivatives of this fit may not be reliable,
since there are only eight data points to be fit and nome are in the

important region where the raimp begins. The step size and range are:

x = 6 inches, h = Ax = 0.5 inches, Xoax > 22 inches. (18)

Skin friction data are shown for two different tunnel stagnation pressures,

which correspond to two different Reyaolds numbers and initial values:

- 3 " v
-’po psia Uo(l )/ A Cfo
38.7 358,006. 0.001085 y . . .
56.0 538,000. 0.00103 aw

These were run on the cemputer program, and the results are shown in

Figur=s $§. It is seen that the theary is in excecllent agreement with

the skin friction data. No cther theoey has becn applied to this data,

and in fact most other thecries, both Karman integral and finite

difference type, are invalid for this experiment because of the surface
curvature, whéch causes large pressure gradients normal to the wall. (8,10)
The present thecry is insensitive to normal pressure gradients,
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2200 T , I
)
o9 O ToN (17)
U, (ft/sed?. T EQUAT 1 -
, DATA (i2)
CURVED
2100 | RANP _
3 BEGINS
!‘.e £ 3.5V HERE
2008 | B |
4 8 12 16 20 2%
x - inches
2.0011 4 l
THEORY, EQUATION (7):
o — _-°_"\ p, = 38.7 psia
0.0010 {— \W £9.0 psia —
¢
0.0008 = +1a, STUREK AND I ]
DANBERG (12): /
- =z 38, i
° - P, 38,7 psia \
® -~ no = 58.0 psia //
0.0008 }— \9 ® —]
\N-/
1
0.0007 J l ! _J j
u 8 12 16 20 24
x - inches
Figure 5. COMPARISON OF THEORY WITH THE SUPERSONIC CURVED

RAMP EXPERIMENT CF STUREK AND DANBERG (12).
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Cxample FLOW PAST A FLAT PLATF

For fiow at zero incidence past a flat plate, as V' = V'' = 9,

and the theory reduces to Equation (10), which further reduces to:
&4, L exp(-0.48 AJA) with A =) at x = x (1%;
dx* 8 L ' L o o’

The variables are separatle and intsgradle, and an exact solution is

possitle:
L
e, = 0.u55 A2 in lexplo.uer /a) + 228 .k y(IZ Uy 1, (2w
£ : o A xm Tw Uy,
where Rx = Uexlve !s the local Reynolds number. This [>rmula may be

used to proceed from a position C_ (Rx ) downstream to a new value C‘(Rx)‘
£ %o £
Zf the plate is turbulent from the leading adge, lo L Rxo = 0, and Eq.{20)

reduces to the flat plate formula of reference 3:

2 957208298 ¢ (v Y2 )3 (21)
A X e w e W

2.{#lat plate) = 0.455 A~
w¥hen compared in reference 3 with almost all availeble data on turbulent
flat plate skin frietion (657 reported values), Eq..(21) was shown to be
vhe most accurate formila ever derived in terms of mean absolute error.
It is more accurate than the tentative foomula we first suggested (in ref. 2J
and is a consequence cf a bettzr correlation of the integral functions G and
H of that reference.

Some nurerical values from Eq.(21) for adiadatic walls are given in
Table 2. and a plot showing the effect of wall temperature is giver in
Figure 6. MNote that there is a substantial effect of Reynolds number in
this plst, so that the common practice in the literature of plotting all
data on A single figu~e of this type can be very misleading.
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Yigure 6,

FREESTREA¥ MACH MUMBER - !e

SKIN FRICTION OK A FLAT PLATE AT VARIOUS MACK
NUMBERS, WALL TEVPCRATURES, AND REYNOLDS
NU¥BERS, FROM ZQUATION (21).
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Table 2

TURBULENT SKIN FRICTION OMN ADIABATIC FLAT PLATES, EQ. (21}

LOCAL REYNOLDS XU¥BER, Rx
HMACH

NUMBER 10° 108 107 108 15°
0 0.006012  0.00375¢  0.002570  0.001866  5.00141e
1 0.005703  0.003522  0.002390  0.001727  0.0713%
2 0.005048  0.003025  0.0062012  0.001435  0.00107u
" 0.003882  0.002i46  0.001357  0.000935  ©.000683
6 0.003225  0.001620  0.000872  0.000647  £.000482
8 0.C02868  0.00i308  0.000745  0.0CJ481  0.000335
16 0.002698  ©0.00111C  0.00GE01  0.000376  0.000253

Three other examples of the use of this new tneory to predict
turbulent skin friction, particularly in supersoni: flows,are given in

references 3 and E.

" CONCLUSIONS

It has been shewn that one can compute turbulent skin friction in
two-dimensional flows with ardbitrary conditicns, using Eq.(7) of this
repcrt, which has been programmed for ready use with a digital computer.
The user must cxly supply: 1) an initial value of skin friction; 2) a
smooth curve fit to the freestreanm velocity distribution; and 3) reasonable
estimates of the freestrearm “ach number and wall tesmerature distridbutions.

The authcrs believe this thecory is the most accurate in the literature.
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